Cómo calcular los promedios móviles en Excel Excel Data Analysis For Dummies, 2nd Edition El comando Data Analysis proporciona una herramienta para calcular promedios móviles y exponencialmente suavizados en Excel. Supongamos, por razones ilustrativas, que usted ha recopilado información diaria sobre la temperatura. Desea calcular el promedio móvil de tres días 8212 el promedio de los últimos tres días 8212 como parte de algún pronóstico meteorológico simple. Para calcular las medias móviles para este conjunto de datos, siga estos pasos. Para calcular una media móvil, primero haga clic en el botón de comando Data Analysis (Análisis de datos) tab8217s. Cuando Excel muestra el cuadro de diálogo Análisis de datos, seleccione el elemento Promedio móvil de la lista y, a continuación, haga clic en Aceptar. Excel muestra el cuadro de diálogo Promedio móvil. Identifique los datos que desea utilizar para calcular el promedio móvil. Haga clic en el cuadro de texto Intervalo de entrada del cuadro de diálogo Promedio móvil. A continuación, identifique el intervalo de entrada, ya sea escribiendo una dirección de rango de hoja de cálculo o utilizando el mouse para seleccionar el rango de hoja de cálculo. Su referencia de rango debe usar direcciones de celdas absolutas. Una dirección de celda absoluta precede la letra de la columna y el número de fila con signos, como en A1: A10. Si la primera celda de su rango de entrada incluye una etiqueta de texto para identificar o describir sus datos, active la casilla de verificación Etiquetas en primera fila. En el cuadro de texto Intervalo, indique a Excel cuántos valores deben incluirse en el cálculo del promedio móvil. Puede calcular un promedio móvil usando cualquier número de valores. De forma predeterminada, Excel utiliza los tres valores más recientes para calcular el promedio móvil. Para especificar que se utilice otro número de valores para calcular el promedio móvil, ingrese ese valor en el cuadro de texto Intervalo. Dígale a Excel dónde colocar los datos del promedio móvil. Utilice el cuadro de texto Rango de salida para identificar el intervalo de hoja de cálculo en el que desea colocar los datos del promedio móvil. En el ejemplo de la hoja de cálculo, los datos del promedio móvil se han colocado en el rango B2 de la hoja de cálculo: B10. (Opcional) Especifique si desea un gráfico. Si desea un gráfico que trace la información del promedio móvil, seleccione la casilla de verificación Salida del gráfico. (Opcional) Indique si desea calcular la información de error estándar. Si desea calcular errores estándar para los datos, seleccione la casilla de verificación Estándar Errores. Excel coloca valores de error estándar junto a los valores de media móvil. (La información de error estándar pasa a C2: C10.) Una vez que haya terminado de especificar qué información de promedio móvil desea calcular y dónde desea colocarla, haga clic en Aceptar. Excel calcula la información del promedio móvil. Nota: Si Excel doesn8217t tiene suficiente información para calcular un promedio móvil para un error estándar, coloca el mensaje de error en la celda. Puede ver varias celdas que muestran este mensaje de error como un valor. Datos suaves elimina la variación aleatoria y muestra las tendencias y los componentes cíclicos Inherente a la recopilación de datos tomados en el tiempo es una forma de variación aleatoria. Existen métodos para reducir la cancelación del efecto debido a la variación aleatoria. Una técnica de uso frecuente en la industria es suavizar. Esta técnica, cuando se aplica correctamente, revela más claramente la tendencia subyacente, los componentes estacionales y cíclicos. Existen dos grupos distintos de métodos de suavizado Métodos de promedio Métodos exponenciales de suavizado Tomar promedios es la forma más sencilla de suavizar los datos Primero investigaremos algunos métodos de promediación, como el promedio simple de todos los datos anteriores. Un gerente de un almacén quiere saber cuánto un proveedor típico ofrece en unidades de 1000 dólares. Se toma una muestra de 12 proveedores, al azar, obteniendo los siguientes resultados: La media o media calculada de los datos 10. El gestor decide usar esto como la estimación para el gasto de un proveedor típico. ¿Es esto una buena o mala estimación? El error cuadrático medio es una forma de juzgar qué tan bueno es un modelo Vamos a calcular el error cuadrático medio. La cantidad verdadera del error gastada menos la cantidad estimada. El error al cuadrado es el error anterior, al cuadrado. El SSE es la suma de los errores al cuadrado. El MSE es la media de los errores al cuadrado. Resultados de MSE por ejemplo Los resultados son: Errores y errores cuadrados La estimación 10 La pregunta surge: ¿podemos usar la media para pronosticar ingresos si sospechamos una tendencia? Un vistazo a la gráfica abajo muestra claramente que no debemos hacer esto. El promedio pesa todas las observaciones pasadas igualmente En resumen, declaramos que El promedio simple o la media de todas las observaciones pasadas es sólo una estimación útil para pronosticar cuando no hay tendencias. Si hay tendencias, utilice estimaciones diferentes que tengan en cuenta la tendencia. El promedio pesa todas las observaciones pasadas igualmente. Por ejemplo, el promedio de los valores 3, 4, 5 es 4. Sabemos, por supuesto, que un promedio se calcula sumando todos los valores y dividiendo la suma por el número de valores. Otra forma de calcular el promedio es añadiendo cada valor dividido por el número de valores, o 3/3 4/3 5/3 1 1.3333 1.6667 4. El multiplicador 1/3 se llama el peso. En general: barra frac fracción izquierda (frac derecha) x1 izquierda (frac derecha) x2,. ,, Izquierda (frac derecha) xn. La (izquierda (frac derecha)) son los pesos y, por supuesto, se suman a 1. Mediano Absoluto Porcentaje Error Medio Absoluto Porcentaje Error (MAPE) es la medida más común de error de pronóstico. MAPE funciona mejor cuando no hay extremos a los datos (incluyendo ceros). Con ceros o casi ceros, MAPE puede dar una imagen distorsionada de error. El error en un elemento cercano a cero puede ser infinitamente alto, causando una distorsión a la tasa de error global cuando se promedia. Para los pronósticos de elementos que están cerca o en volumen cero, el Error Simétrico de Porcentaje Absoluto Medio (SMAPE) es un mejor medida. MAPE es el error de porcentaje absoluto promedio para cada período de tiempo o previsión menos los reales divididos por los reales: Las aplicaciones de pronóstico de negocio Vanguard Difference Vanguard calculan MAPE automáticamente. Empresa Vanguard Software ofrece el software de pronóstico y optimización más agudo en el benchmark mundial verificado. No era de extrañar que uno de los únicos líderes en el análisis avanzado se centrara en las tecnologías predictivas. No sólo revelar el futuro, le ayudamos a darle forma. Soluciones Productos Contacto Vanguard Software Corporation 1255 Crescent Green Cary, NC 27518 USA Teléfono: nbsp Por favor habilite JavaScript para ver este campo. Fax: nbsp Por favor habilite JavaScript para ver este campo. Email: Por favor habilite JavaScript para ver. Copia 2016, Vanguard Software Corporation. Todos los derechos reservados
No comments:
Post a Comment